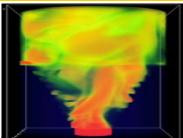
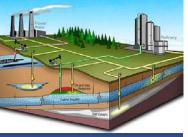

NETL: THE Fossil Energy Laboratory


NETL's mission is to discover, integrate, and mature technology solutions to enhance the Nation's energy foundation and protect the environment for future generations

ENERGY Nat

National Energy Technology Laboratory

World-Class Facilities



Computational Engineering

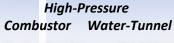
Materials Engineering & Manufacturing

Geological & Environmental Systems

Energy Conversion Engineering

Systems Analysis & Engineering

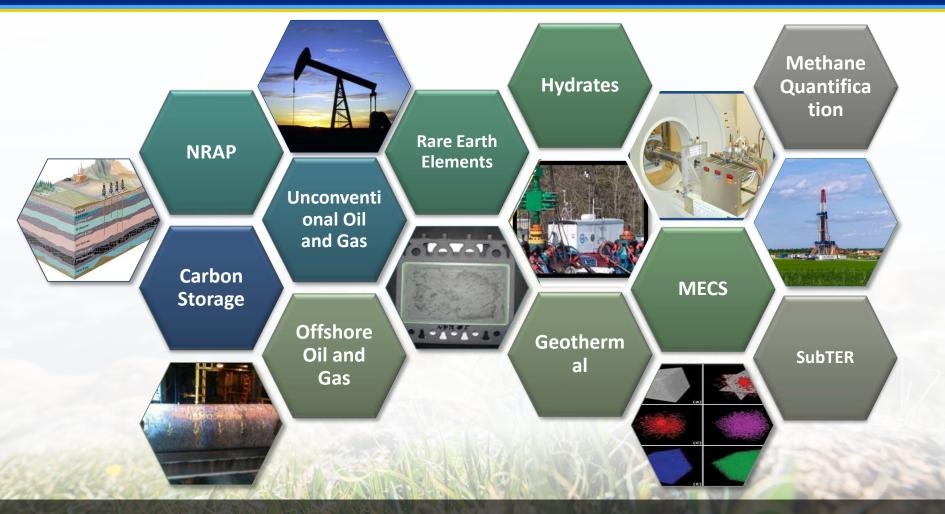
HPC – Joule



Pilot-Scale Foundry

Portable Field Laboratory

SOFC-Turbine Hybrid


Immersive Virtual Simulator

National Energy Technology Laboratory In situ CT Scanning

Advancing Solutions in Geological and Environmental Sciences

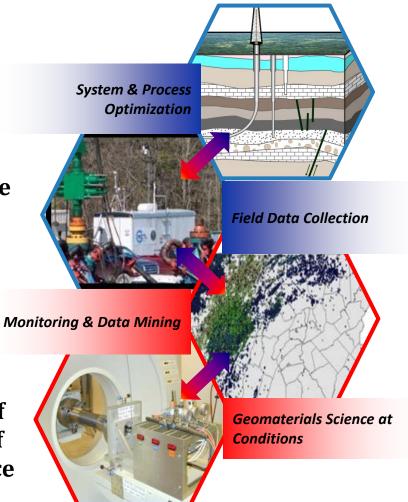
Understanding ~ Materials ~ **Processes** ~ **Tools** ~ **Technology**

U.S. DEPARTMENT OF **National Energy**

Technology Laboratory

NETL RIC Subsurface Research

Engineering Solutions using an Integrated Approach



Validated simulation tools to predict behavior of engineered natural systems: reservoir to receptor

> Field-scale data to calibrate and validate predictions and to establish baselines

Physical and computational data analysis techniques to identify key patterns

> Scientific understanding of the behavior/properties of real materials at subsurface conditions

NETL Research Presentations and Posters

TUESDAY, AUGUST 16, 2016

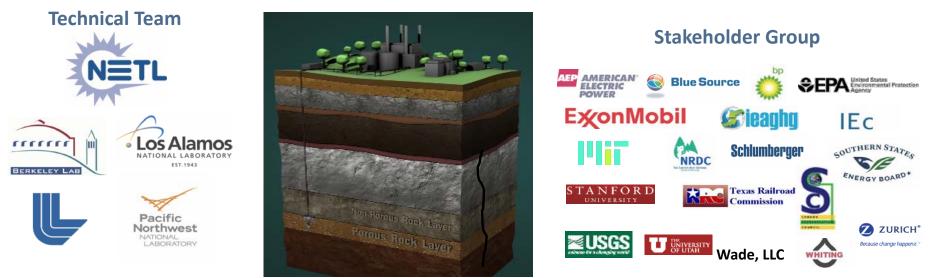
- 12:40 PM Monitoring Groundwater Impacts Christina Lopano
- 1:55 PM Multi Variate Examination of the Cause of Increasing Induced Seismicity Kelly Rose
- 4:40 PM Exploring the Behavior of Shales as Seals and Storage Reservoirs for CO₂ Ernest Lindner
- 5:05 PM Risk Assessment for Offshore Systems <u>Kelly Rose</u>
- 5:30 PM Metal-based systems in Extreme Environments <u>Jeff Hawk</u>
- 6:15 p.m. Poster Session
 - Kelly Rose Developing a carbon storage resource assessment methodology for offshore systems
 - Doug Kauffman Catalytic Conversion of CO2 to Ind. Chem. And eval. Of CO2 Use and Re-Use
 - Liwel Zhang Numerical simulation of pressure and CO2 saturation above an imperfect seal as a result of CO2 injection: implications for CO2 migration detection

WEDNESDAY, AUGUST 17, 2016

- 12:30 PM MVA Field Activities Hank Edenborn
- 1:20 PM Microseismicity –<u>Erik Zorn</u>
- 2:35 PM Resource Assessment Angela Goodman
- 2:35 PM Understanding Impacts to Air Quality from Unconventional Natural Gas Natalie Pekney
- 4:05 PM Improving Science-Base for Wellbore Integrity, Barrier Interface Performance Nik Huerta
- 5:20 PM Wellbore Integrity and Mitigation <u>Barbara Kutchko</u>

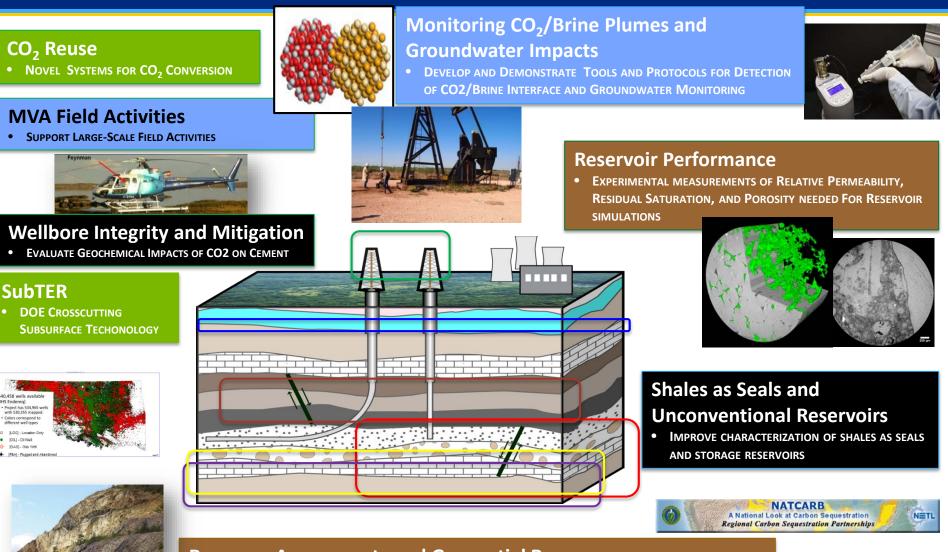
THURSDAY, AUGUST 18, 2016

- 1:00 PM Advances in Data Discovery, Mining, & Integration for Energy (EDX) <u>Vic Baker</u>
- 1:25 PM Methods for Locating Legacy Wells Garrett Veloski
- 2:40 PM Reservoir Performance <u>Johnathan Moore</u>
- 3:05 PM Geochemical Evolution of Hydraulically-Fractured Shales <u>Ale Hakala</u>



https://edx.netl.doe.gov/carbonstorage/ https://edx.netl.doe.gov/offshore/ https://edx.netl.doe.gov/ucr/ https://edx.netl.doe.gov/nrap

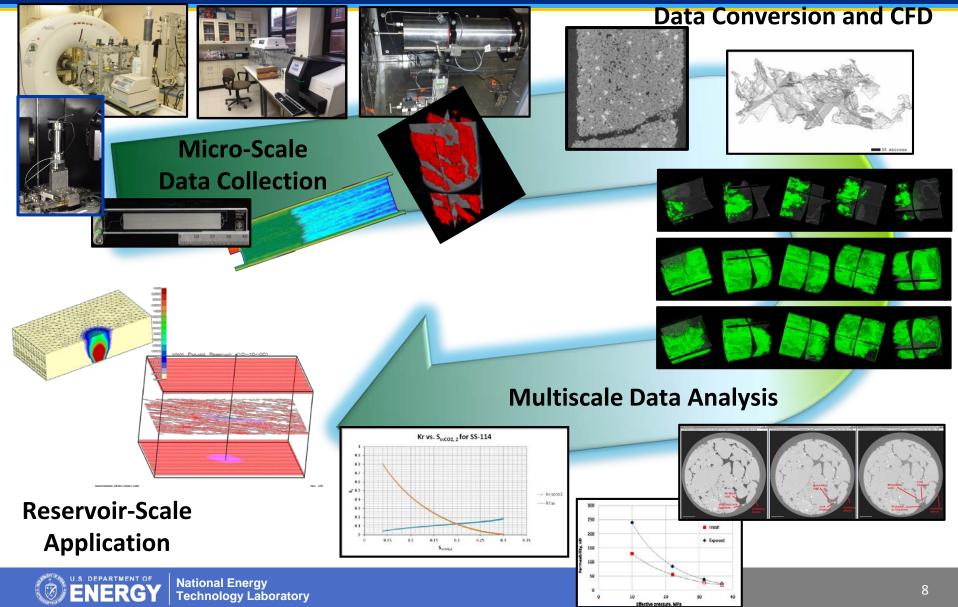
NRAP leverages DOE's capabilities to help quantify uncertainties and risks necessary to remove barriers to full-scale CO₂ storage deployment.
Objective: Building tools and improving the science base to address key questions related to environmental impacts from potential release of CO₂ or brine from the storage reservoir, and potential ground-motion impacts due to injection of CO₂


NETL RIC's Carbon Storage Portfolio

CARBON STORAGE ATLAS

Enhancing Effectiveness and Reducing Uncertainty in Long-Term CO₂ Storage and Efficiency

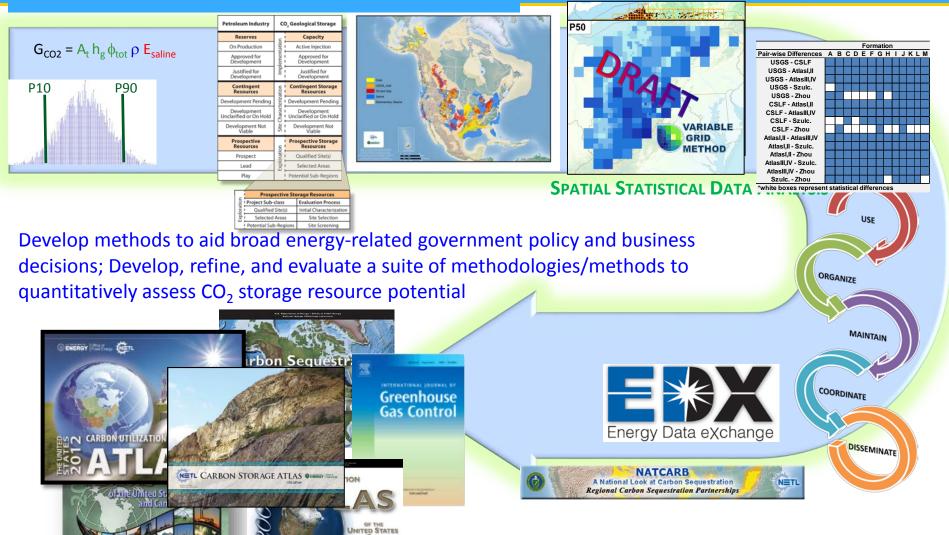
Energy Data exchange



Resource Assessments and Geospatial Resources (EDX and NATCARB)

- DEVELOP DEFENSIBLE DOE STORAGE METHODS FOR THE ONSHORE AND OFFSHORE
- DEVELOP, MAINTAIN, AND UTILIZE GEOSPATIAL PLATFORMS TO SUPPORT CO2 STORAGE RESEARCH

Approaches to scale from pore to reservoir

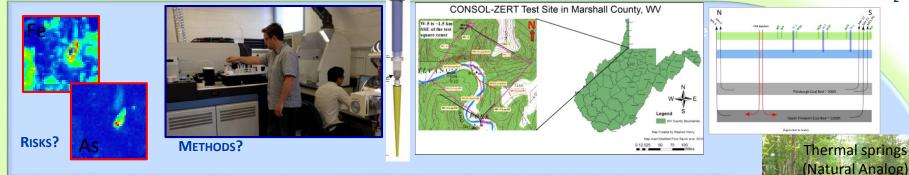

Resource Assessments and Geospatial Resources

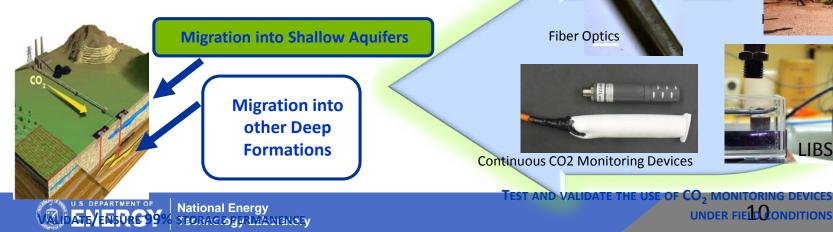
ND CANADA

DEVELOP DEFENSIBLE DOE METHODOLOGY FOR REGIONAL ASSESSMENTS

Technology Laboratory

GEOSPATIAL PLATFORMS


Monitoring Groundwater Impacts

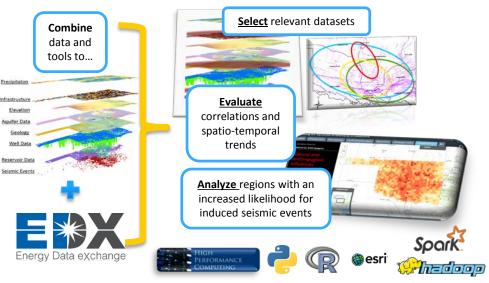

EOR Fiel

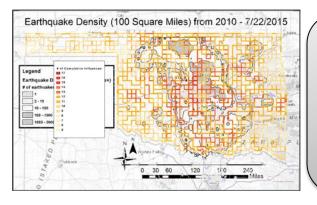
CO₂ PLUME

UNDERSTAND NATURAL BACKGROUND VARIABILITY

Developing and demonstrating a suite of geochemically-based monitoring strategies for groundwater systems, and developing a statistical understanding of natural groundwater variability in CO₂ storage systems.

NETL: A Multi-Variate Examination of the Cause(s) of Increasing Induced Seismicity Events with Geoscience Computing & Big Data

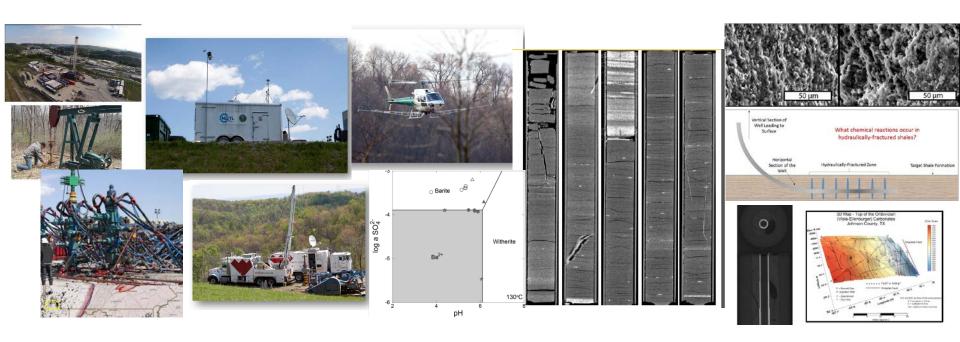



Main Objectives:

- Address the need for rapid, repeatable evaluations to reduce induced seismicity risk
- Developing tool/method using probabilistic & big data approach
- Develop approaches to reduce uncertainty and constrain subsurface trends
- Improve discovery, integration, and joint analysis of multiple datasets using advanced "Big Data" computing algorithms

Current Work:

- Gathered & using over 150 dataset volumes, containing >200 million data fields
- Testing custom probabilistic analytical algorithms & data mining capabilities using Hadoop cluster
 - Faster data mining and analytical processing times by 60x's
- Merging GIS and Big Data computing for advanced 3D/4D geospatial analysis
 - Offloading intensive geometric operations from desktop to a Hadoop cluster
- Released <u>Storymap</u> summarizing induced seismicity evaluation problem and beta spatial analyses using common risk factors
- Completed meta analysis evaluating seismicity risk factors
- Developing phase 2 probabilistic analytical work flow using combination of existing and custom methods


Beta analysis of 18 key datasets related to natural and anthropogenic earthquake factors –

Shows broad alignment between geospatial assessment of risk factors & earthquake activity in OK

NETL RIC's Unconventional Portfolio

Investigating and reducing environmental impacts from unconventional HC production

- Fluid interactions with shale
- Geomechanics and induced seismicity
- Field monitoring
- Analytical approaches for source determination
- Atmospheric monitoring and emissions quantification

- Portfolio Manger: Alexandra Hakala
- Team Technical Coordinators: Dustin Crandall, Barbara Kutchko, Richard Hammack, Alexandra Hakala, Natalie Pekney, Mark McKoy, Donald Remson

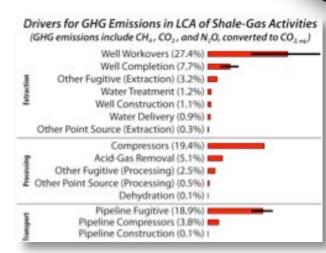
Changes to Reservoir Rocks and Seals

- 6 month exposure in highpressure vessels
 - 23.8 Mpa (3450 psi)
 - 85 °C (185 °F)
- CT, XRD, SEM, petrography, porosity, and permeability analyses were conducted before and after the six month exposure experiment.

NETL's Assessment of Shale Gas Development's Air Quality Impacts

111-1-5

Problem:


 Uncertain/inaccurate values for emission factors associated with large contributors to lifecycle emissions

Objectives:

 To collect field data of representative ambient and point source air emissions Emissions of methane, volatile organic compounds, particulate matter, reactive nitrogen, carbon dioxide

NETL's Mobile Air Monitoring Laboratory

NETL's Use of Multiple Measurement Approaches:

Ambient	Point-Source
	Values for a specific location and/or
Values integrated over an area	operation
Plume interception dependent on local	Determination of background
meteorology	concentrations not necessary
Continuous measurements capture	Provides a "snapshot" or short-term
variations in operator/equipment activity	measurement

NETL Facilities/Capabilities

 $\begin{array}{l} \text{VOCs, NO}_{\text{x}}, \text{ ozone,} \\ \text{CH}_4 + \delta^{13}\text{C}_{\text{CH4}}, \text{CO}_2 \\ + \delta^{13}\text{C}_{\text{CO2}}, \text{PM}_{10}, \\ \text{PM}_{2.5}, \\ \text{Meteorological} \\ \text{Data} \end{array}$

Unattended, remote operation via satellite link

- Source Emissions Measurements: HiFlow Sampler, Dynamic Flux Chamber
- Tracer Release for Indirect Methane Emissions Measurements

Water column

> n & Wellbore

Reservoir

Overburde

Natural Disasters also a arowina consideration...

NETL's Offshore Portfolio Target Key E&P Risks:

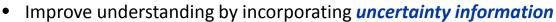
- Cementing Failures
- Equipment & Casing Failures
- Reducing geologic uncertainty
- Higher risk targets, "exploratory" systems Through use of novel tools, models and big data

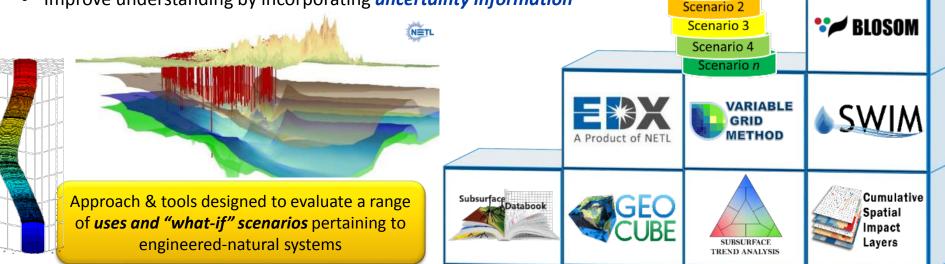
Wellbore Integrity - Improved Science Base for Materials

- Characterizing the Behavior of Metal-Based Systems Used for Control Devices in Extreme Environments
- Improving Science-Base for Wellbore Integrity, Foam Cements
- Evaluation of Lithology:Cement:Casing Barrier Integrity under UDW Subsurface Conditions

Rapid Detection and In Situ Characterization – Improving Safety

- Kick Detection at the Drill Bit Adaptation of Existing Technology to Reduce Risks Associated with Deep and Ultra-Deep Drilling
- Completed: Improving Flow Assurance, Expediting Well Control, and Reducing Environmental Impacts Resulting from Blow-Outs in HPLT Environments


Risk Reduction - Mitigating Knowledge & Technology Gaps in Offshore Systems-


- Quantifying Complex Fluid-Phase Properties at High Pressure/High Temperature (HPHT)
- Assessing Risks and the Potential for Environmental Impacts for Offshore GOM Resources

Energy Geo-Data Science Toolbox

Focused on creating tools & analyses that:

- Combine data from *different scales and disciplines*
- Help evaluate a range of potential *environmental, social, and economic* variables
- Evaluate various energy scenarios, for risk reduction, resource evaluation, & improved efficiency
- Use to highlight *knowledge and/or technology gaps*

Outputs &

Results

Technology Gi

Scenario 1

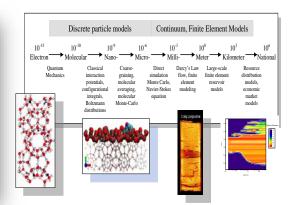
NETL RIC Gas Hydrate R&D

In Situ Predictions & Evaluation

Characterize, predict/identify, and understand areas with significant gas hydrate occurrences.

Field Studies in the Natural Environment

Collect and perform geologic, geochemical, and microbiologic analyses of samples from natural gas hydrate systems


Study gas hydrate formation/dissocia tion and mixed-

gases hydrate

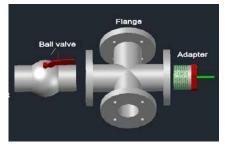
phenomena

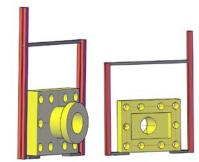
Experiment

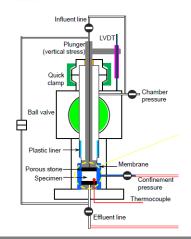
al Studies

Numerical

Analyses

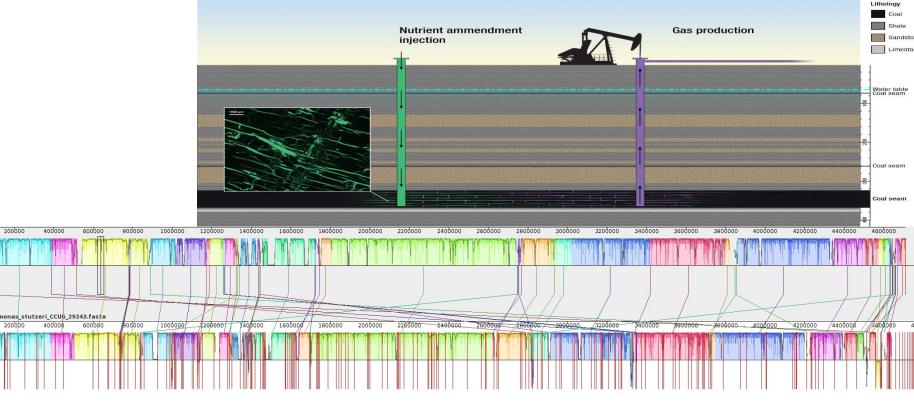

Simulate natural gas hydrate behavior in porous media and sediments to evaluate their stability in the natural environment as well as future production potential.




Pressure Core Characterization

- Developing Pressure Core Handling and Testing Chambers
 - Pore-scale visualization technique will be combined with new pressure core characterization chambers for hydrate pore habits in natural samples
 - Geomechanical/hydrological property measurements under in-situ conditions
- Four Newly Designed Chambers under Development
 - Core handler, cutter, sub-sample corer, and multi-property testing chamber (consolidation, acoustic, permeability)
 - All four units will be connected seamlessly without disturbing the internal pressure, which will be controlled, maintained, and monitored at all times.
 - Preliminary designs completed and currently under detailed design and hazard/safety review

Biogasification Micro Field Laboratory Study



<u>Phase 1:</u>

- Wells will be cored/ drilled and permeability will be studied.
- Lab studies conducted with cores and fluids

<u>Phase 2:</u>

- Baseline conditions will be monitored
- Nutrients will be added to the injection well and increased methane production will be monitored.

R

Thank you!

TUESDAY, AUGUST 16, 2016

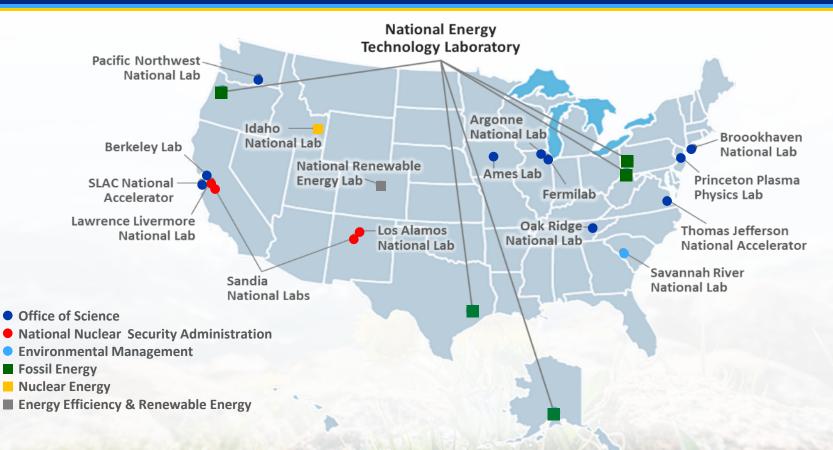
- 12:40 PM Monitoring Groundwater Impacts Christina Lopano
- 1:55 PM Multi Variate Examination of the Cause of Increasing Induced Seismicity Kelly Rose
- 4:40 PM Exploring the Behavior of Shales as Seals and Storage Reservoirs for CO₂ <u>Ernest Lindner</u>
- 5:05 PM Risk Assessment for Offshore Systems Kelly Rose
- 5:30 PM Metal-based systems in Extreme Environments Jeff Hawk
- 6:15 p.m. Poster Session
 - Kelly Rose Developing a carbon storage resource assessment methodology for offshore systems
 - Doug Kauffman Catalytic Conversion of CO2 to Ind. Chem. And eval. Of CO2 Use and Re-Use
 - Liwel Zhang Numerical simulation of pressure and CO2 saturation above an imperfect seal as a result of CO2 injection: implications for CO2 migration detection

WEDNESDAY, AUGUST 17, 2016

- 12:30 PM MVA Field Activities Hank Edenborn
- 1:20 PM Microseismicity –<u>Erik Zorn</u>
- 2:35 PM Resource Assessment <u>Angela Goodman</u>
- 2:35 PM Understanding Impacts to Air Quality from Unconventional Natural Gas Natalie Pekney
- 4:05 PM Improving Science-Base for Wellbore Integrity, Barrier Interface Performance Nik Huerta
- 5:20 PM Wellbore Integrity and Mitigation <u>Barbara Kutchko</u>

THURSDAY, AUGUST 18, 2016

- 1:00 PM Advances in Data Discovery, Mining, & Integration for Energy (EDX) <u>Vic Baker</u>
- 1:25 PM Methods for Locating Legacy Wells Garrett Veloski
- 2:40 PM Reservoir Performance <u>Johnathan Moore</u>
- 3:05 PM Geochemical Evolution of Hydraulically-Fractured Shales <u>Ale Hakala</u>



https://edx.netl.doe.gov/carbonstorage/ https://edx.netl.doe.gov/offshore/ https://edx.netl.doe.gov/ucr/ https://edx.netl.doe.gov/nrap

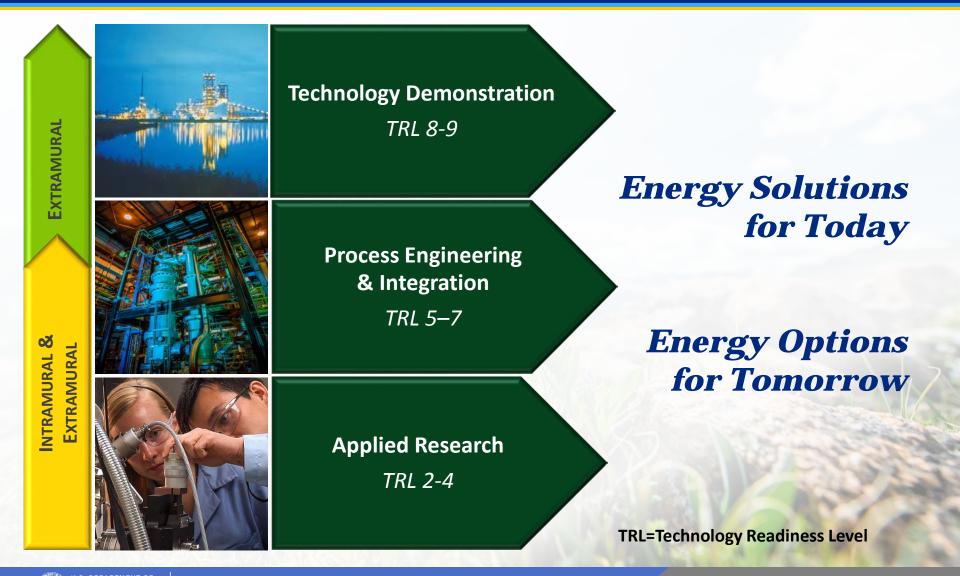
NETL: THE Fossil Energy Laboratory

NETL's mission is to discover, integrate, and mature technology solutions to enhance the Nation's energy foundation and protect the environment for future generations

ENERGY

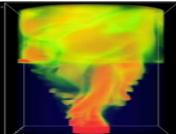
National Energy Technology Laboratory

History of Enabling Fossil Fuels



National Energy Technology Laboratory

Technology Readiness...Maturing Technology

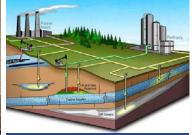


National Energy

Enduring Core Competencies

Computational Engineering

High Performance Computing


Data Analytics

Materials Engineering & Manufacturing

Structural & Functional

Design, Synthesis & Performance

Geological & Environmental Systems

Air, Water & Geology

Understanding & Mitigation

Energy Conversion Engineering

Component & Device

Design & Validation

Systems Analysis & Engineering

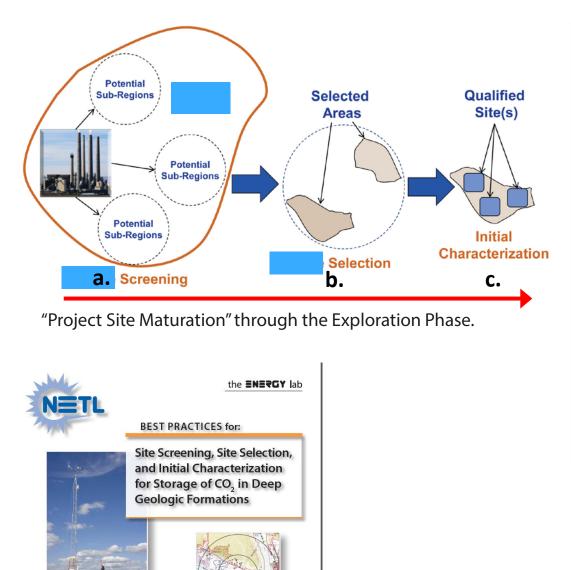
> Process & System

Optimization, Validation & Economics

Effective Resource Development Efficient Energy Conversion Environmental Sustainability

Core Competencies & Technical Thrusts

ENERGY National Energy Technology Laboratory


Geology & Geospatial Analytical Team (G&G Team)

MISSION: The Geology & Geospatial Analytical Team seeks to reduce uncertainty about, and provide data to characterize engineered-natural energy systems through development of data, information, approaches and numerical simulations spanning the micron to regional scale.

DEVELOP DEFENSIBLE DOE METHODOLOGY FOR REGIONAL ASSESSMENTS Prospective Storage Resource for CO₂ storage reservoirs

Petroleum Industry	CO ₂ Geological Storage	
Reserves	_	Capacity
On Production	tatio	Active Injection
Approved for Development	Implementation	Approved for Development
Justified for Development	lmp	Justified for Development
Contingent Resources	ation	Contingent Storage Resources
Development Pending	eriza	Development Pending
Development Unclarified or On Hold	Site Characterization	Development Unclarified or On Hold
Development Not Viable	Site (Development Not
Prospective Resources	ц	Prospective Storage Resources
	oration	Prospective Storage Resources Qualified Site(s)
Resources	Exploration	Resources
Resources Prospect	Exploration	Qualified Site(s)
Resources Prospect Lead	Exploration	Qualified Site(s) Selected Areas
Resources Prospect Lead Play Prosp		Qualified Site(s) Selected Areas
Resources Prospect Lead Play Prosp	pectiv	Resources Qualified Site(s) Selected Areas Potential Sub-Regions
Resources Prospect Lead Play Prosp	oectiv -class	Resources Qualified Site(s) Selected Areas Potential Sub-Regions ve Storage Resources Evaluation Process
Resources Prospect Lead Play C. Optimized Prospect Sub-	class Site(s	Resources Qualified Site(s) Selected Areas Potential Sub-Regions ve Storage Resources Evaluation Process s) Initial Characterization s Site Selection